Kinetic theory of plasma sheaths surrounding electron-emitting surfaces.

نویسندگان

  • J P Sheehan
  • N Hershkowitz
  • I D Kaganovich
  • H Wang
  • Y Raitses
  • E V Barnat
  • B R Weatherford
  • D Sydorenko
چکیده

A one-dimensional kinetic theory of sheaths surrounding planar, electron-emitting surfaces is presented which accounts for plasma electrons lost to the surface and the temperature of the emitted electrons. It is shown that ratio of plasma electron temperature to emitted electron temperature significantly affects the sheath potential when the plasma electron temperature is within an order of magnitude of the emitted electron temperature. The sheath potential goes to zero as the plasma electron temperature equals the emitted electron temperature, which can occur in the afterglow of an rf plasma and some low-temperature plasma sources. These results were validated by particle in cell simulations. The theory was tested by making measurements of the sheath surrounding a thermionically emitting cathode in the afterglow of an rf plasma. The measured sheath potential shrunk to zero as the plasma electron temperature cooled to the emitted electron temperature, as predicted by the theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Negative plasma potential relative to electron-emitting surfaces.

Most works on plasma-wall interaction predict that with strong electron emission, a nonmonotonic "space-charge-limited" (SCL) sheath forms where the plasma potential is positive relative to the wall. We show that a fundamentally different sheath structure is possible where the potential monotonically increases toward a positively charged wall that is shielded by a single layer of negative charg...

متن کامل

Emissive sheath measurements in the afterglow of a radio frequency plasma

Articles you may be interested in Negative plasma potential in a multidipole chamber with a dielectric coated plasma boundary Measurement of plasma-surface energy fluxes in an argon rf-discharge by means of calorimetric probes and fluorescent microparticles Time-resolved measurements of the E-to-H mode transition in electronegative pulse-modulated inductively coupled plasmas Time evolution of e...

متن کامل

Continuum-plasma Solution Surrounding Non-emitting Spherical Bodies Continuum-plasma Solution Surrounding Non-emitting Spherical Bodies

The classical problem of the interaction of a non-emitting spherical body with a zero meanfree-path continuum plasma is solved numerically in the full range of physically allowed free parameters (electron Debye length to body radius ratio, ion to electron temperature ratio, and body bias), and analytically in rigorously defined asymptotic regimes (weak and strong bias, weak and strong shielding...

متن کامل

The Temperature and Mass Effects on Dust Grain Electrical Potential in Dusty Plasma

By orbit-limited motion (OLM) theory and the kinetic model, currents carried by electronsand ions on the dust grain are obtained and the effects of temperature and drift velocity of ions on thedust grain electrical potential are considered. The calculations were performed for finding the role of densities of dust grains and ions on the dust grain electrical potential which is the ma...

متن کامل

Continuum-plasma Solution Surrounding Nonemitting Spherical Bodies Accessed Terms of Use Continuum-plasma Solution Surrounding Non-emitting Spherical Bodies

The classical problem of the interaction of a non-emitting spherical body with a zero meanfree-path continuum plasma is solved numerically in the full range of physically allowed free parameters (electron Debye length to body radius ratio, ion to electron temperature ratio, and body bias), and analytically in rigorously defined asymptotic regimes (weak and strong bias, weak and strong shielding...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 111 7  شماره 

صفحات  -

تاریخ انتشار 2013